

文部科学省と国立大学附置研究所・センター 個別定例ランチミーティング

第134回 大阪大学 核物理研究センター (2025.11.14)

12:05-12:10(5分) : 研究所・センターの概要

12:10-12:25(15分) : いま、明かされる原子核の真相 田中純貴

12:25-12:45(20分) : 質疑応答

核物理研究センターの主要な研究活動

TRIUMFとの極低温中性子 共同研究

Hadron

\(\lambda \) Charm

at J-PARC

EIC(電子・イオン衝突型加速器)プロジェクトへの参画

サイクロトロン施設

原子核物理 加速器物理 RI製造 ミューオン物理 中性子・ミューオン応用

理論 ハドロン 原子核物理学 スーパーコンピュータ

核物理研究センターの学内での位置付け

学内で唯一の国際共同利用・共同利用拠点

常勤教員当たり研究業績数

2位 (理工情報系10部局中)

常勤教員当たり科研費獲得件数

2位 (理工情報系10部局中)

常勤教員当たり科研費獲得額

2位 (理工情報系10部局中)

常勤教員当たり電気代

1位(全部局中)

目指す方向性

大学が加速器を持つ価値を、学内外のステークホルダーに とって最大化する。

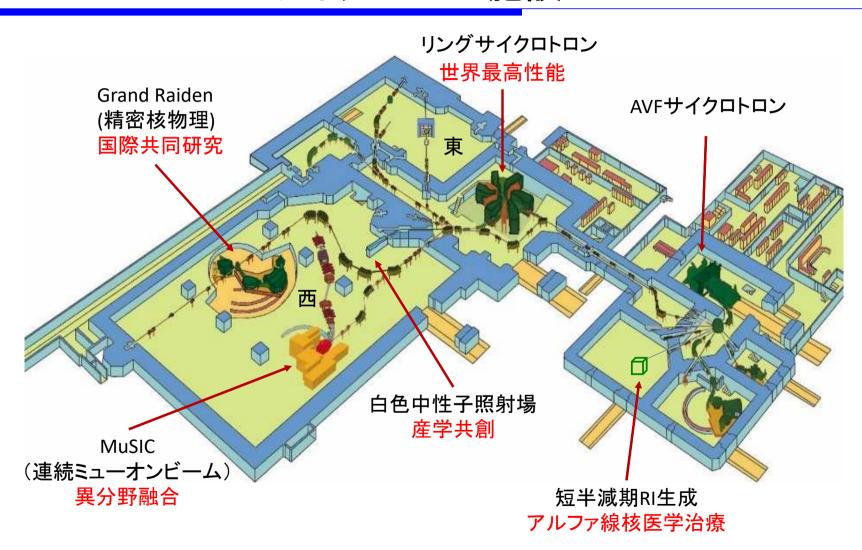
国際頭脳循環

国際共同研究の推進により、新しいアイデア、新しい装置、新しい人を呼び込む。

イノベーション

異分野融合研究や産学共創により新しい価値を生み出す。

卓越人材育成


関連コミュニティの国際ネットワークを活用して、卓越した人材を育成する。

大学の機能強化

大学のグローバル化と財務基盤強化に 貢献する。

サイクロトロン施設

いま、明かされる原子核の真相: -クラスターとパイオンで読み解く原子核の本当の姿-

田中 純貴 大阪大学核物理研究センター 助教

自己紹介:田中純貴

略歴

2016年 大阪大学博士(理学)

2017-19年 ダルムシュタット工科大学 ポスドク

2019-24年 理化学研究所 特別研究員

2024年-現在 大阪大学核物理研究センター 助教

専門分野

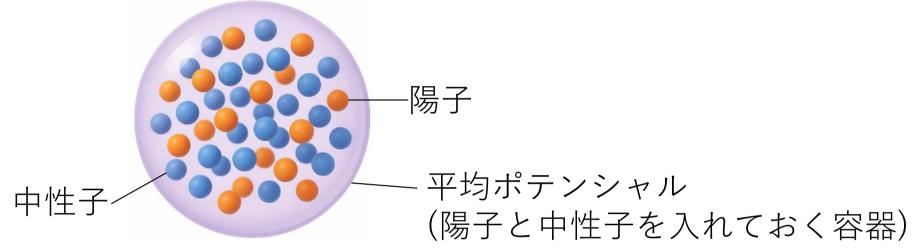
原子核物理,量子ビーム物理,放射線測定器

受賞

2021年 理化学研究所 梅峰賞

2022年 日本物理学会 若手奨励賞

2022年 原子核談話会 新人賞



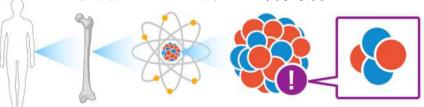
2024年 大阪大学賞

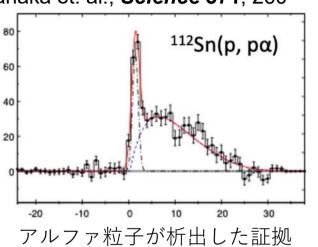
2025年 AAPPS-JPA Award

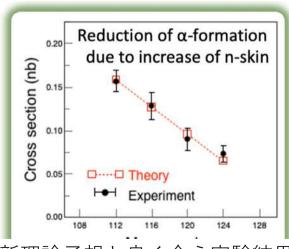
原子核の常識:独立粒子モデル



- ✔ 原子核は、陽子と中性子から構成される.
- ✓ 陽子や中性子の間には非常に複雑な力(核力)が働いている.
- ✓ 各粒子は他の全ての粒子が作り出す平均ポテンシャルの中を ほぼ独立に運動するとみなせる。
- ✓ この近似的な描像を「独立粒子モデル」と呼ぶ。
- ✔ このモデルにより、原子核の安定性(魔法数)を大まかに説明できる.
- ✔ 多くの理論はこの近似をベースにしている.


常識を破った実験: クラスターノックアウト


実験セットアップ


Junki Tanaka et. al., Science 371, 260

本研究が示す新しい物質観

新理論予想と良く合う実験結果

■ AAAS誌のサイエンス誌に研究結果を掲載

Today's headlines²⁶ Jan 2021

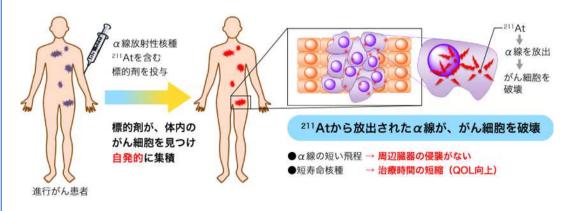
※IOP出版のヘッドラインニュース

国際共同研究への発展: ONOKOROプロジェクト


実験参加国:日本、韓国、米国、フランス、中国、ドイツ、ノルウェー、英国2024年に行った実験(出版準備中)のコラボレーション83人(半分以上学生)、26機関

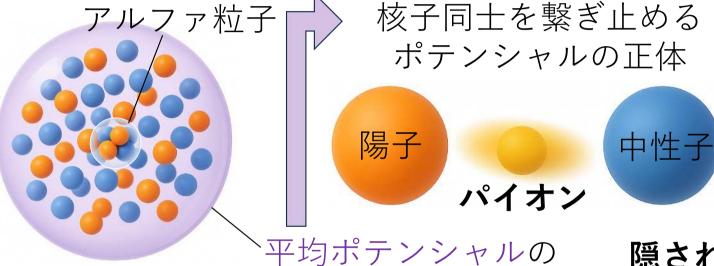
世界各国から学生や若手研究者がRCNPに集い実験を行います. 学生の量子ビームの基礎を鍛える貴重な施設.

異分野融合研究に向けて:アルファ崩壊の研究


- ・アルファ崩壊の基礎研究
- ✔ 原子核からアルファ粒子を放出.
- ✓ 原子核のどこに, どのくらいアルファ 粒子があったかは未解明.
- ✓ アルファ崩壊する核種から直接アルファ粒子をノックアウト.

我々の研究成果はアルファ崩壊機構全容解明の大きな手がかり

アルファ崩壊のようす


・アルファ崩壊の応用研究

→ RCNP所内で部門を超えて協力推進しています.

アルファ粒子形成の起源を求めて:パイオン交換に還る

•原子核の常識は**難解なパイオンの役割**を隠した、都合の良い近似.

パイオン

湯川が中間子交換による 核力を予言.

自発的対称性の破れに伴う **南部・**ゴールドストン粒子

原子核内部

隠されたパイオンの役割⇒ パイオンを叩き出す!

センター内の強力な共同研究と支援体制

描像では理解が難航

• 加速器研究部

新しい描像

- ・データ収集基盤室
- 技術部門
- •理論研究部(反応,構造,パイオン)-パイオンの役割研究で強固な連携

まとめと夢:

- 原子核の常識とそれを覆すRCNPの実験を紹介しました.
- 国際共同研究ONOKOROプロジェクトを紹介しました.
- RCNPはコミュニティにとって重要な研究の要です.
- 基礎研究と応用研究の異分野融合研究が進んでいます.
- さらに核物理の基礎を調べる研究を提案しています.
- ・湯川・南部の日本の原子核研究を継承し、 次世代の核物理を核物理研究センターから世界へ発信します。