

文部科学省と国立大学附置研究所・センター 個別定例ランチミーティング

第129回 東京大学 医科学研究所 (2025.10.10)

国産ゲノム編集技術の開発と医療応用

吉見 一人

東京大学 医科学研究所 先進動物ゲノム研究分野/ ゲノム編集研究分野

ゲノム編集技術は様々なライフサイエンス分野に応用

実験動物

• マウス以外の実験動物

• 新しいヒト疾患モデル

工業 農水産業

- ゲノム編集植物・動物
- バイオリアクタ

ゲノム 編集技術

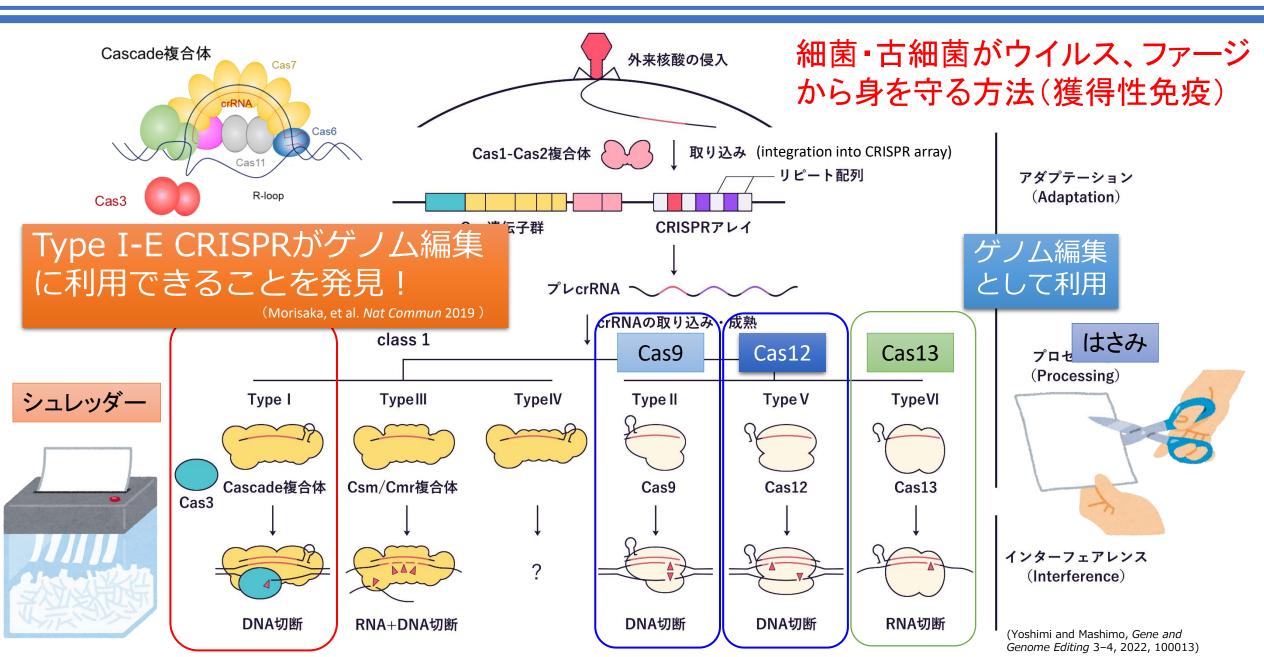
新しいゲノム編集 技術の開発研究

細胞医療

- iPS細胞・幹細胞研究
- Ex vivo治療(CAR-T、 幹細胞の移植・治療)

生体内 治療

- In vivo治療 (LNP、AAV)
- 不妊治療・受精卵?



診断ツール

- ウイルス検出試薬
- Liquid Biopsy

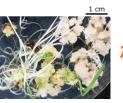
多様なCRISPR-Casシステム

CRISPR-Cas3の特殊なDNA切断機構(概要動画)

CRISPR-Cas3

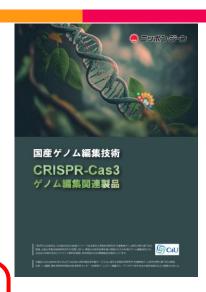
Type I-E CRISPR技術の社会実装に向けて

- ▶ 2023.9- 一般試薬販売開始
 - ◆ Cas3タンパク質、Cascade複合体の販売・受託合成
- ▶副次的一本鎖DNA切断活性を用いたCRISPR診断
 - ◆感染症ウイルス診断(SARS-CoV2、Influ、Mpoxなど)
 - ◆遺伝子診断(がん検診、遺伝性疾患など)

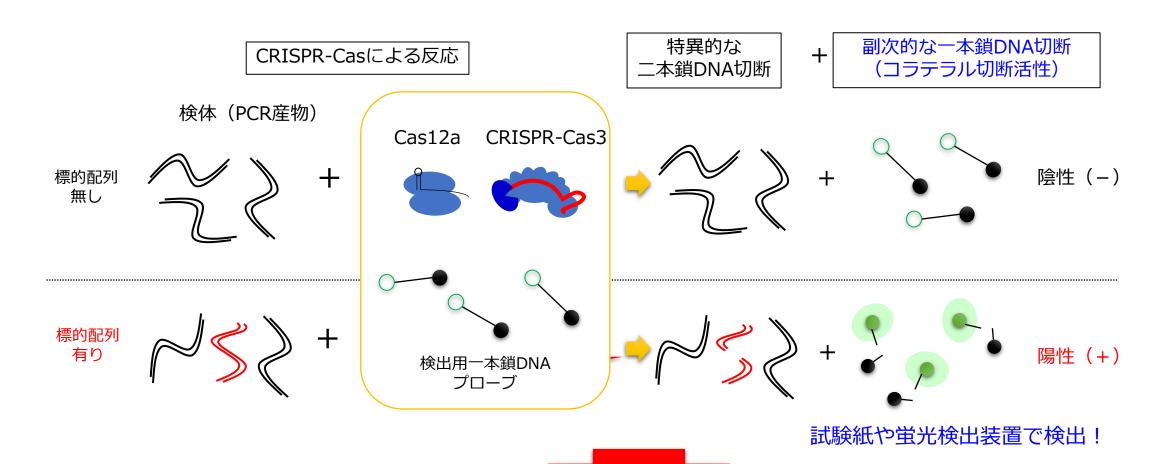


- ▶安全性の高いゲノム編集ツール
 - ◆遺伝子治療(ex vivo, in vivo 治療)
 - ◆動物・植物など様々な生物でのゲノム改変

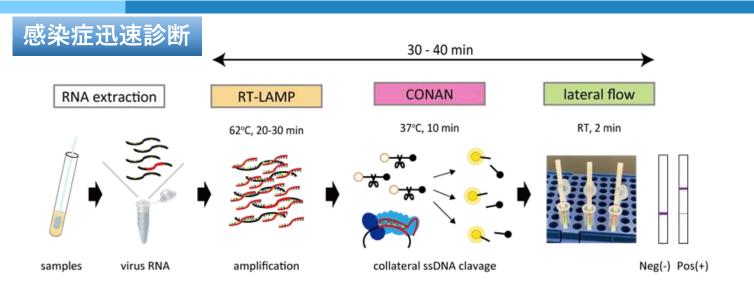
マウス・ラットへの適用

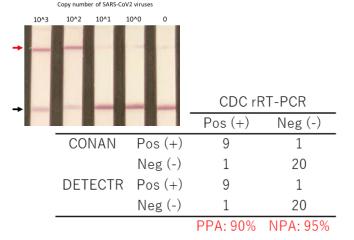

(K Yoshimi et al., Cell Rep Methods., 2024)

植物(イネ)への適用


(H Saika et al., under revision)

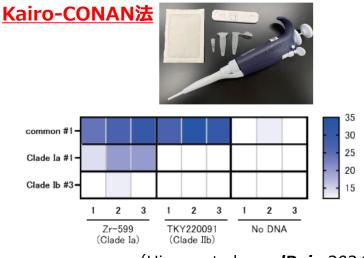
産業分野への実装


CRISPR-Cas3のコラテラル切断活性を利用した核酸検出法


サンプル中に含まれる微量な標的DNA配列をシグナルとして検出できる

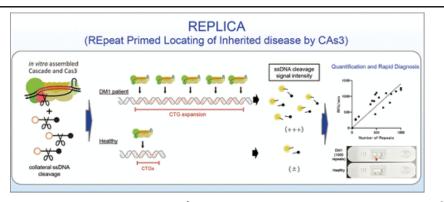
→ CONAN (Cas3-Operated Nucleic Acid detectioN) 法として確立

Cas3を用いたCRISPR診断: 医療分野への実装

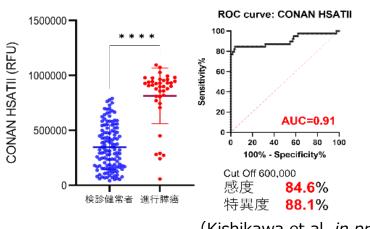


SARS-CoV-2、Influenza

(Yoshimi et al. *iScience* 2022)


サル痘ウイルス(Mpxv)

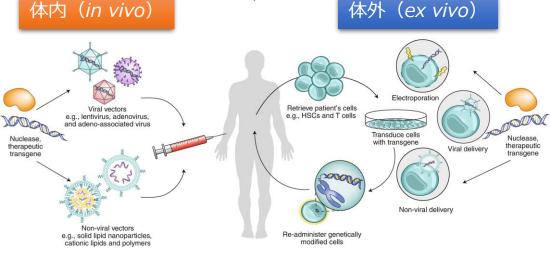
(Hirano et al. **medRxiv** 2024)


遺伝子スクリーニング

リピート病(DM1)簡易定量診断

(Asano et al. ACS Syn Biol 2024)

膵臓がんの検診(血中cfRNA)

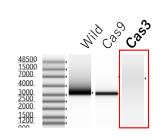

(Kishikawa et al. in prep)

ゲノム編集技術を用いた遺伝子治療

ヒト疾患における遺伝子治療法

Human diseases e.g., sickle cell anemia e.g., idiopathic pulmonary fibrosis and Huntington's disease

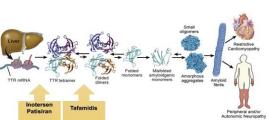
(ex vivo)


Nat Biotechnol. 2020 Jul; 38(7): 845-855.

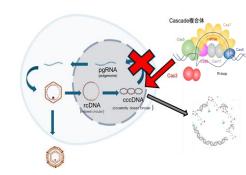
体外 (ex vivo)

- ➤ CAR-T細胞
- > 造血幹細胞
- > iPS細胞

(in vivo)


- > AAV
- > mRNA-LNP
 - ◆ トランスサイレチンアミ ロイドーシス(TTR)
 - HBV除去

βサラセミア

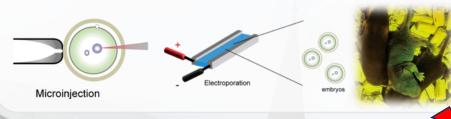

Cas9の in vivo治療

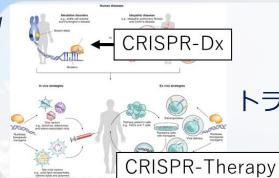
Phase3の治験が実施 (NTLA-2001)

> N Engl J Med 2021:385:493-502

1400 - Saline 1200 Sep-Cas3-LNP 6mg/kg මු 1000 DiT-Cas3-LNP 800 6ma/ka 600 Cas3でも効果が実証! 1Week 2Week 3Week (S Ishida et al., under revision) Post injection

潜伏cccDNAを 含む、HBVの 完全除去!


生命現象の理解から、医療や産業の社会実装へ!



自由なゲノム改変

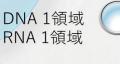
Human

CRISPRを用いた トランスレーショナル研究!

いつでも、どこでも、ゲノム編集!

複数機能テザリング可能な 次世代型ゲノム編集操作ツール

エピゲノム編集



Activator Insulator RNA編集

核酸イメージング

Cascade複合体

DNA 1領域 RNA 1領域

「ゲノム編集」と「先進疾患モデル」の融合

The University of Tokyo (Mashimo lab)

Yuko Yamauchi Hiromi Taniquchi Kosuke Hattori Kouva Mikamo Tetsutaro Kimihira Yuki Saeki Koji Asano Rika Hirano Tomoaki Fuiii Saeko Ishida Tomoji Mashimo

Osaka University, iexas

Yuko Kotani Yoshiki Miyasaka Arisa Tanigawa Yoshihiro Uno

Osaka University

Junji Takeda Hiroyuki Morisaka Shinichiro Nakada

Kyoto University, CiRA

Akitsu Hotta Yuya Okuzaki Peter Gee

RIKEN institute

Kohei Takeshita Masaki Yamamoto

DBCLS

Yuki Naito

Kanazawa University

Noriyuki Kodera

Tsukuba University

Akihiro Kuno Satoru Takahashi

C4U Corporation

Akimitsu Hirai Satomi Shibumura Yayoi Kunihiro Shoji Watanabe Shugo Kobori

Jikei University

Yumi Kanegae

Nagoya University

Naoko Abe Hiroshi Abe

The University of Tokyo

Takahiro Kishikawa Seiva Yamayoshi Yoshihiro Kawaoka

NARO

Tomoaki Saika

ETH Zurich

Jacob Corn Charles Yeh Lilly van de Venn Susanne Kreutzer

Funding

Support

創薬等先端技術支援基盤プラットフォーム

文部科学省新学術領域研究 学術研究支援基盤形成 先端モデル動物支援プラットフォーム

